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Abstract 

J 

3agt'd 
A sudden commencement magnetic storm started on 30 September, 1961. 

The Explorer 12 Satellite was i n  o r b i t ,  i n  the day s ide  of the magneto- 

sphere, during the s t o m .  

f ie ld  magnitude a t  4 earth radii, and a t  magnetic la t i tudes above 20 , 
was increased. 

a field depression a t  4 Re near the equator. 

Daring t5e recovedry pbse  of the storm the 
0 

A low l a t i tude  pass, late i n  the recovery phase, revealed 

The f i e l d  distortions ob- 

served are  a t t r ibuted t o  inflation of the magnetosphere by l o w  energy 

charged par t ic les  on f i e l d  l i n e s  from L = 2 to L = 5 .  
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Introduction 

The main phase of a magnetic s t o m  is recognized as a world-wide 

depression of the horizontal component of the ear th ' s  magnetic f ie ld .  

The sudden commencement and i n i t i a l  phase of a storm w e r e  at tr ibuted by 

Chapman and F e m m  (1931) t o  compression of the earth's mgnetic f i e ld  

by a stream of plasma from the sun. 

phase w a s  caused by entry of some of the plasma into a cavity formed as 

the plasma flawed around the earth 's  magnetic f i e l d  (Chapman and Ferraro, 

1933). According t o  them, captured plasma formed a ring current flowing 

around the ear th  a t  a distance of several ear th  rad i i  f r s m  the ear th ' s  

center . 
f o r  several days, w a s  interpreted as a gradual decrease in  intensity of 

They also proposed that the main 

The decay of the main phase magnetic f i e l d  depression, las t ing 

the ring current. 

Singer (1957) f irst  proDosed that the motions of charged particles 

trapped i n  the geomagnetic f i e l d  could produce a ring current. The dis- 

covery of the trapped par t ic le  belts by V a n  Allen (1959) gave impetus t o  

t h i s  concept. Detailed calculations of the magnetic f i e l d  contributions 
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of trapped par t ic les  have been presented (Dessler and Parker, 1959; 

Dessler, Hanson and Parker, 1961; Akasofu and Chapman, 1961; Akasofu, 

Cain anti Chapman, 1961, 1962; Apel, Singer and Wentworth, 1962; Kern, 

1962; Beard, 1962). The he l ica l  motions of par t ic les  along the magnetic 

- 

l i n e s  of force and the  d r i f t  motion i n  longitude, when considered i n  de- 

t a i l ,  can be considered as a net e l ec t r i ca l  current. This current pro- 

duces a depression of the magnetic f i e l d  a t  the  region of high par t ic le  

flu and a t  lover a l t i tudes;  it produces an increase i n  f i e l d  strength 

a t  higher a l t i tudes.  

With the advent of s a t e l l i t e  experiments i n  the  magnetosphere, an  

ear ly  discovery of the  ring current w a s  anticipated. Magnetic f i e l d  ex- 

periments w e r e  included on s a t e l l i t e s  as ear ly  as 1958, and charged 

pa r t i c l e  detectors were flown t h a t  could, hopefully, reveal the ring 

current par t ic les .  Although the size and shape of the  magnetosphere 

have been determined and the charged par t ic le  populations over a vide 

range of energies have been studied, the  location of the  ring current 

and ident i f ica t ion  of the  par t ic les  responsible f o r  it are  s t i l l  un- 

cer ta in .  

The Russian Lunik 1 and Lunik 2 space probes observed, i n  1959, 

a f i e l d  depression near 3 ear th r a d i i  (Re) that could be interpreted 

as due t o  a ring current (Dolginw e t  al., 1961). 

precise, though low-altitude, f i e l d  magnitude measurements that indi- 

cated the  ring current must be above 1.1 R 

Explorer 6 measurements of one f i e l d  component ( in  a plane perpendicular 

t o  the vehicle spin axis) showed a depression near 7 ear th  radi i  on the  

dark side of the  magnetosphere (Smith, 1962). Explorer 10 measurements 

suggested a f i e l d  depression below 4 R 

Vanguard 3 provided 

(Cain e t  al., 1962) . e 

(Heppner e t  a l ,  1963). Explorer 12 e 



measurements indicated tha t  there were no subst.mtia1 depressions of the 

f i e l d  above 5 R i n  the sunlit hemisphere (Cahill and Amazeen, 1963; e 

Cahill  and Patel, 1966). 

the magnetosphere f i e l d  magnitude was observed t o  r i s e  near 4 R 

During the magnetic storm of 30 September, 1961, 

(Patel and e 

Cahill,  1962; C a h i U  and Bailey, 1965). Explorer 14 measurements i n  the  

dark hemisphere i n  1963 showed a f i e l d  depression near 8 R that may be e 
similar t o  that observed by Explorer 6 (Cahill, 196). 

interpreted, however, as due principaiiy t o  inf ia t ion of the  geomgifitiz 

f i e l d  by par t ic les  outside the "durable" trapping region, probably the 

near-earth portion of the neutral  sheet observed by - mess (1965) i n  the 

magnetosphere t a i l .  Eiektron 2, a high-inclination Russian s a t e l l i t e ,  

has provided magnetic measurements i n  the dark hemisphere that show a 

f i e l d  depression commencing between 5 and 7 R 

with increasing magnitude t o  at leas t  3 R 

This has been 

and extending inward 

(Dolginov e t  al., 1966). 
e 

e 
The search f o r  charged par t ic les  of sufficient energy density t o  

produce a s ignif icant  r ing current has been largely unsuccessful. 

more energetic par t ic les  (protons of energy 

energy > 50 kev), observed t o  date, have insufficient flux, by several 

orders of magnitude, t o  produce measurable magnetic e f fec ts  a t  the 

ea r th ' s  surface. 

cated t h a t  protons of energies greater than 100 kev, located near 

3 Re, possess energy density sufficient t o  produce a small ,  but 

measurable, f i e l d  depression (Hoffman and Bracken, 1965). Electrons 

of energy greater than 10 kev, measured i n  the same experiment, were 

LUU lov  i n  eEergy density by several orders of magnitude. 

has recently reported observation of l o w  energy electrons by the Cadmium 

Sulphide t o t a l  energy detector on Explorer 12. 

electrons cannot be specified uniquely, but i f  an average energy of 1 kev 

The 

> 1 MeV and electrons of 

Measurements by Davis and Williamson (1963) indi- 

I - -  F'rank, 1966 

The energy of these 



4 

i s  assumed, a substantial  f i e l d  depression would resul t .  

Parker (1962) and A-lrasofu (1963) have recently reviewed experimen- 

It appears that a ring tal and theoretical  studies of magnetic storms. 

current that can produce a surface depression of 100 gammas must l i e  quite 

close t o  the earth, 2 t o  4 Re. 

causes a greater depression o f t h e  f i e l d  when distributed over a more dis- 

Although a given energy density of par t ic les  

tGt L s b a ,  LL.. --.. 4-n- rrmrrre;nn 
bUC Y I P N Y I W  Z&J+suvsvu is l M t e d  by t h e  loc& streng;tfi. of 

the main f i e ld .  A t  7 earth r ad i i  the main f i e l d  i s  only 100 gammas and 

can not support a be l t  of par t ic les  producing a 1OO-gamma depression a t  

earth. It is  probable that the ring current belt consists primarily of 

protons, E < 100 kev, but electrons, E < 10 kev, may also contribute t o  

the f i e l d  depression. 

Akasofu, chapnan and Venkatesan (1963) pointed out two d i s t i n c t  por- 

t ions  of the main phase of large storms, one i n  which the maximum depres- 

sion occurs and f o r  which recoveryis  rapid, and a second phase for  which 

the recovery takes several days. 

two different  be l t s  responsible f o r  this behavior, perhaps located i n  dif-  

ferent  regions of the magnetosphere. 

They have suggested tha t  there may be 

I n  the present paper the  experimental evidence fo r  ring currents 

obtained from the Ebqlorer 12 satellite will be c r i t i c a l l y  examined f o r  

the region of the  magnetosphere between 3 R and the boundary. In par- 

t i cu la r ,  the data obtained during a large magnetic storm, on 30 September, 

1961, will be presented and compared with results from more quiet periods. 

e 
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Experiment 

The magn tometer experiment and the a t e l l i t e  orb i t  have been 

described i n  earlier papers (Cahill and Amazeen, 1963; C a h i l l  and Patel, 

1966). 

demands some additional discussion of errors .  In the boundary studies 

the perturbations in t he  f i e l d  magnitude were comparable t o  the pre- 

dicted f ie ld .  

a r e  a very small f rac t ion  of the  t o t a l  f i e l d .  

e r ro r  a re  d ig i t iza t ion  (+ - 12 gammas f o r  each of three perpendicular sensors 

f o r  each individual measurement), zero l eve l  d r i f t  (estimated t o  be less 

than 10 gammas f o r  each sensor), and change i n  sens i t i v i ty  of the magneto- 

meters (change i n  slope of t he  cal ibrat ion curve a f t e r  pref l ight  calibra- 

t ion) .  The ef fec ts  of digi t izat ion e r ro r  can usually be made qui te  small 

by averaging many data points. 

measuring small  fields beyond the magnetopause. 

several  hundred gammas a possible zero l eve l  e r ro r  of 10 gammas i s  l e s s  

important although it cannot be neglected. 

slope becomes more important a t  high f i e l d  magnitudes. 

The use of %he data f o r  investigation of r ing current e f fec ts  

In  the present study the perturbations we are looking f o r  

The principal sources of 

The zero level d r i f t  i s  of concern when 

For f i e ld  magnitudes of 

Any change i n  cal ibrat ion 

Fortunately the  magnetometer design provides f o r  great s t a b i l i t y  

Most of the  fac tors  that might change against  change i n  sens i t iv i ty .  

s ens i t i v i ty  would produce a much larger  change i n  zero level ;  absence of 

signif icant  change i n  zero l eve l  has been noted. 

t i on  sequence allows a check of magnetometer sens i t iv i ty .  

that the  slopes of t he  component magnetometer cal ibrat ion curves have 

not changed a s  much as I$ (10 gammas a t  full scale,  1000 gammas) during 

the period t o  be analyzed. 

in a single measurement of f i e l d  magnitude a t  a l eve l  of 1000 gammas a t  

An in - f l igh t  calibra- 

W e  estimate 

The maximum error ,  due t o  cal ibrat ion change, 



3 R i s  therefore lower than 10 gammas. 

300 y ,  this error  i s  less than 3 gammas. 

space c r a f t  magnetlc f i e l d  a f t e r  preflight calibration i s  estimated t o  

At 5 Re where the f i e l d  is 

Error due t o  a change i n  
e 

be less than 10 g8nnn8se 

I n  order t o  compare measured and predicted f i e ld  directions, it is 

necessary t o  transform f r o m  s a t e l l i t e  coordinates ( B, cy, and $ ) t o  ac- 

curate geomagnetic tiipoie cwmponent~ ii %, ai16 . A W U  &b.rju --m--i-es A =e- 
r’ tp 

curate knowledge of the direction of the satell i te spin axis i n  i n e r t i a l  

space. Although this direction has been determined, from solar aspect 

data, t o  an accuracy of a f e w  degrees, there i s  s t i l l  some uncertainty 

about direction- When the f i e l d  magnitude is lo00 ganmras, a few degrees 

er ror  will produce a large e r r o r  i n  f i e l d  components. 

we have chosen, a t  present, t o  compre only f i e l d  magnitude. 

For this reason 

Finally, i n  the  results t o  be presented we will re ly  mainly on 

changes in f i e l d  magnitude from one pass t o  the next. 

magnitude will be shown on successive passes i n  a similar region of space; 

these changes a re  apparently caused by a large magnetic storm. 

Changes i n  f i e l d  
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Results 

The magnetic storm index, D s t , i s  shown i n  Figure 1 for a 17 day 

period including the 30 September storm. 

preceding the s t o m  sudden cummencement is shown i n  Figure 2. 

dary is seen a t  10.4 Re. TWs boundary penetration was sanewhat unusual, 

however, since it was identified as associated with a world wide positive 

The outbound pass immediately 

The boun- 

swiaen irnpuise ( n~shida EUXZ y 1W). rn& b-7 appm€o+&y pcrec? 

i n  past the satellite just a f t e r  the beginning of the sudden impulse a t  

the sa t e l l i t e .  This sudden impulse occurred 2 hrs. 18 min. before the 

sudden ccmnnencement a t  UO8 UT. 

the sudden cammencement time. 

at  this time, have been previously reported (HofAnan et al, 1962; Bryant 

- e t  al, 1962). A drop i n  f i e l d  magnitude and change i n  direction near 

U03 may indicate passage of the  sudden camencement front.  

l i t e  was a t  12 R ~ ,  -20' magnetic la t i tude and a t  1000 LOC~I. Time. 

f ie ld  vector, between Udt and U O 7  UT was pointing toward the magneto- 

pause; it was l y i n g  closer t o  the ec l ip t ic  plane than before the sudden 

Figure 3 shows 2 hours of data including 

Charged part ic le  measurements from Explorer 12, 

The satel- 

The 

commencement and was pointing east  of the sun-earth l i n e  i n  a "garden 

hose" direction (Table 1). Rote that the low energy protons and electrons 

rose somewhat earUer a t  2100 (HO- e t  al, 1962). 

!Pime 1 Bll Solar Ecliptic U t i tude  Longitude 

2100, 30 Sept. 40 Y - 30' 
0 2107 15 Y 18' 

40 Y 13' 2116 n 

102O 

n 5 O  

15 9' 

€& 2llO the e t u d e  had recovered t o  nearly 50 gamtuaa and by 2 l l 5  

the f ie ld  direction had assumed a new direction about 40' A.am the old. 

Both before and after this event the f i e ld  points nearly ant iparal le l  t o  



the  earth's f ie ld .  On the  time scale of these data samples, one point 

6.0 second averagd p r  miaute, there i s  no indication of e r r a t i c  or tur- 

bulent f i e lds  during storm front  passage. The i n i t i a l  change i n  magni- 

tude and direction took place i n  less  than 1 minute ( 6 x 10 m. thick- 4 

ness if &%.- bLIc -Le- O1.LVC.k 9nnn+ A A v - v  y r n 1 n c i t y  .___ is 1 0 0  Kin/sec). The layer  of f i e l d  

pointing toward the magnetopause took 5 t o  10 minutes t o  pass. 

The s a t e l l i t e  continued outward t o  apogee during the in i t ia l  phase 

of the storm. 

ear ly  recovery phase i s  shown i n  Figure 4. The f i e l d  magnitude is  un- 

usually high, 50 t o  100 gammas, and several large changes i n  direction 

m t u  between 0300 and 0900 UT while the s a t e l l i t e  i s  beyond the magneto- 

pause. Between 0930 and 1000 UT the f i e l d  direction becomes close t o  the 

dipole direction. Apparently the s a t e l l i t e  has entered the magnetosphere 

although large fluctuations i n  direction and magnitude continue. A t  1040 

the f ie ld  direction reverses. 

magnetopause has been pushed i n  past the s a t e l l i t e .  The magnetosphere 

i s  re-entered a t  1100. A s  the  s a t e l l i t e  continues inward the fluctua- 

t ions become smaller. 

siderably higher than predicted a t  5 Re. Thus, during the ear ly  recovery 

phase of a great magnetic s tom, there is  no evidence of f i e ld  depression 

between 5 Re and the boundary. 

pause has expanded beyond apogee a t  13 Re. 

penetrated again u n t i l  3 October. 

The next inbound pass, during the l a t e  main phase and 

We interpret  this as evidence that the 

Note tha t  the measured f i e l d  magnitude is  con- 

On the  next outbound pass the magneto- 

The magnetopause i s  not 

Figure 5 shows a record of f ie ld  magnitude obtained on the September 

29 outbound pass during a quiet period before the storm. 

plotted i n  the local. gecmagnetic meridian plane, with geomagnetic la t i tude  

and rad ia l  distance as the coordinates. 

tude, measured minus predicted, are shown along the orb i t  as ver t ica l  l ines .  

The orb i t  i s  

The differences i n  f i e l d  matpi-  
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. 

I '  

The differences a re  Smal l  (< 1Dy) from L=5 t o  L = 8. 

f i e l d  appears t o  be s l ight ly  lower  than predicted from L = 5 t o  7 but 

not significantly so  i n  view of the estimated accuracy of the data. 

Figure 6 does show a definite f i e l d  depression from L = 3.5 t o  L = 6. 

This pass was during the recovery phase of the storm of 24 September 

w h i l e  D s t  was still approximately -25~. 

t ~ d e  nhsemred et. the sat.ellit.e was greater than 20y, IJ =3.5 t o  4.5. 

Note that the s a t e l l i t e  trajectory crosses the magnetic equator a t  ~ = 6  

and remains below 10 magnetic la t i tude a t  L = 3.5. 

terminate a t  low a l t i tude  due t o  saturation of the magnetometer ampli- 

fiers as  the main f i e ld  increases above 1000 y. 

The measured 

The depression i n  f i e l d  magni- 

0 
The magnetic records 

Figure 7a is a composite record of the inbound passes during the 

main and recovery phases of the 30 September s t o m  and Figure TD contains 

the outbound records. We emphasize that this data was obtained principally 

during the recovery phase of a great magnetic storm. 

from 3 t o  8 R w e r e  near the 0 9 0  local  time meridian while the inbound 

passes were near ll00 local  t i m e .  The first outbound record a t  the top 

of Figure i s  immediately before the storm and shows compression near 

the boundary but small  positive difference f i e ld  a t  lower al t i tudes.  

The next, 1-2 October, is from the first outbound pass after the main 

phase. 

decreasing slowly i n  the outer portions of the  orbit .  

beyond apogee and the large 40 gannna differences 

not due t o  compression. 

are, a t  low al t i tudes,  i n  the same region of R - h space. The general 

features remain, large positive difference near 4 R 

greater distances. 

The outbound passes, 

e 

The difference is  large and positive a t  3 t o  5 Re (L= 4 t o  7), 

The boundary is  

near 4 R are  obviously e 

The t ra jector ies  of the l a s t  four outbound passes 

decreasing a t  e' 

The differences on 5 October a re  somewhat less than 
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on 2 October but s t i l l  greeter than 30 gamm~s. 

The top record Of Figure 7a i s  f o r  October 1 while the xmin phase 

is ending. !Be differences are grez;t near the boundary but at 4 R 
e 

they are only 15 t o  20 ganrmas, considerably l e s s  than fo r  1 - 2 October 

outbound pass. 

20 m s .  

the 4 October differences, obtained a t  a s l iqh t ly  lower la t i tude,  only 

a f e w  gannnas. The 5-6 October inbound record indicates smal l  negative 

differences a t  3 R while the outbound record from the same day shows 

30 gamma positive differences. 

inbound and a t  ll R 

t rans i t ion  region f ie lds .  

The 2 October inbound pass shows differences greater than 

The 3 October inbound differences are about15 &armras and 

e 
The boundary was a t  10.5 Re on 3 October 

on 4 October inbound. Beyond these distances are e 

The principal features of these records are the large positive 

differences on the  outbound passes and the  smaller differences,becdng 

negative by 5 October, on the  inbound passes. 

that the  outbound passes traverse increasingly greater magnetic la t i tudes  

(and higher L shel ls  a t  the same radial distance) on successive days 

w h i l e  the  inbound passes are a t  progressively lower la t i tudes.  It is  

also important that the magnitude of t o t a l  vector dis tor t ion f i e l d  i s  

not obtained i n  the data presented. W e  have subtracted measured f i e l d  

magnitude from predicted f i e l d  magnitude. Since the  difference vector 

i s  of order 10 t o  100 and the  t o t a l  f i e l d  500 t o  lo00 y , 
vector component parallel t o  the main f i e ld  i s  selected by this procedure. 

It is important t o  note 

the difference 
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Discussion 

The magnetosphere had recovered by 29 September from an ea r l i e r  

storm on 24 September. 

outbound pass in Figure To show that the  f i e l d  magnitude from L=5 t o  7 

is dis tor ted very l i t t l e ,  0 t o  - 10 gammas, f m t h e  predicted magnitude. 

During the storm sudden commencement and in i t i a l  phase the  magnetosphere 

must be compress& but since the stiteiiiie is beywid the mgaet~pziise 

this cannot be confirmed. The magnetosheath ( t ransi t ion region) f i e l d  

i s  moderately high, 30 t o  50 gammas, pr ior  t o  the sudden commencement. 

The sudden impulse that occurred 2 hours e a r l i e r  may have been related 

t o  the solar  plasma stream that caused the storm. 

The 29 September outbound pass and the 30 September 

+ 

The f i e l d  change a t  U03 UT was preceded a t  2100 by appearance of 

electrons 10 t o  35 kev, and a factor of 100 increase i n  protons, E >  200 kev. 

A slow rise, s ta r ted  a t  2045 f o r  the  protons (Hoffman, et  al, 1962). 

A t  2030 protons, E >  5 MeV, started t o  rise (Bryant e t  al, 1962). 

of this evidence supports the idea that the f i e l d  change a t  2l03 indicates 

passage of the plasma front that caused the storm sudden commencement. 

The 6 minute delay, u n t i l  2lOg when the  sudden commencement was observed 

on earth, i f  considered as hydromagnetic wave propagation t i m e  implies 

an average BM velocity 200 km/sec. It is  not cer ta in  whether the change 

All 

indicates passage o f t h e  plasma front t ravel l ing through the magneto- 

sheath or inward passage of the  standing bow shock wave. 

of this event, a t  12 Re, places it near the closest  (- 13 R ) shock 

front observation by Ness e t  al, 1964. 

boundary, must move inward a t  sudden commencement. 

2103 t o  2 l l O  UT, the s a t e l l i t e  may have been i n  the  interplanetary 

medium with the shock front then expanding'outward past the s a t e l l i t e .  

It is  possible that the f i e ld  af ter  2110 is  a l s o  interplanetary but 

The location 

e 

The shock front,  as  well as the 

During the interval  
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unusually high i n  magnitude. 

ec l ip t i c  coordinates a t  2100, U O 7  and ~ 1 6  were given in mble  1. 

The approximate f i e l d  directions i n  solar  

From 2l20 t o  2300 UT, 30 September, the  i n i t i a l  phase continued. 

By WOO,  1 October, the main phase development had started; the greatest 

f i e l d  depression occured i n  the interval, 0200 to 1500 with the effects 

Of l a rge  palar disturbances superimposed on t he  main phase depression 

on ground mgnetogmm. From O p o O  t o  1400, 1 October the storm mpid 

recovery proceeded w h i l e  the  s a t e l l i t e  was inbound from10 Reto-3 Re 

(Figure 4). 

of 8-6  R 

rapid recovery phase. Fluctuations i n  pressure were producing large 

movements of the  boundary on the sunlit side of the magnetosphere a s  

la te  as ll00 UT. 

0930 UT, indicates that the  interplanetary f ie ld ,as  w e l l  as the  solar  

wind pressure, was high and e r r a t i c  during the main phase. Although 

large boundary motions apparently occur several t i m e s  during t h i s  inter-  

val, we have been unable t o  identify the 

ground magnetograms. 

by the  large ionospheric effects caused by polar substorms. 

1500, 1 October, during the  recovery phase the boundary expanded past 

13 Re. 

the maximum depression of t he  main phase (mi- D s t )  and expandin@; 

during the recovery phase has been observed f o r  other storms and has 

been reported earlier (Freeman, 1964, @ h i l l  and Patel, 1966). 

'Ilhis record is of great in te res t  since the boundary location 

Shows that the solar wind pressure was s t i l l  high during the e 

High magnetic f ie ld  i n  the magnetosheath, 0300 t o  

resultant sudden impulses on 

The search for ground l eve l  evidence is  hampered 

Soon a f t e r  

This behavior of the boundary, pushed close t o  the ear th  during 

These observations while the s a t z l l i t e  was i n  the t ransi t ion region, 

can reveal l i t t l e  of t he  developnent of the main phase deep i n  the m g -  

netosphere; but during the  longer slow recovery phase some useful Conch- 

sions can be obtained. It i s  par t icular ly  apparent i n  the outbound passes 
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c 

of Figure i'b that, a t  magnetic la t i tudes greater than 3C 0 and a t  L values 

above 5 the recovery phase of this storm is  seen as  an increase i n  f i e l d  

magnitude of 30 t o  40 gammas. On the inbound passes, October 2 and 3, 

the dis tor t ion i n  magnitude a t  hmz + 30°, L 2 5 i s  positive but some- 
w h a t  less than seen on the outbound passes. 

a lso  has a lower posit ive distortion. 

is ?E xm?,mpSs this m y  be due t o  time and spa t ia l  variation in the  main 

phase distortion. 

steady, decaying slowly and i s  expected, i f  due t o  trapped charged par t ic les ,  

The October i inbaund pass 

Since the  rapid recovery phase 

Later i n  the slow recovery phase the  dis tor t ion is 

t o  be approximately syrnmetrical about the magnetic dipole axis  and about 

the  magnetic equator. The discrepancy between the inbound and outbound i 
passes a t  4 Re on 2 and 3 October may be due t o  e r r o r  in measurement, 1 

I 

e l 

t o  small differences in l a t i t ude  or i n  L value ( the  October 2-3 out- 

bound pass is  a t  L = 7, A m  = -40 a t  4 R while 3 October inbound is a t  

I,= 5 ,  hm = + 30 a t  4 R ), or  t o  differences in loca l  t i m e .  

0 

1 

0 

e 

The inner portions of the outbound passes are  a t  progressively higher 
0 

1atit.irdes ( -30 t o  -40') and higher L shel ls  w h i l e  the  inbound passes 

are  at  lower la t i tudes(+ 30' t o  +15 )and lower L shel ls .  

in f i e l d  magnitude f o r  the  outbound passes remains positive and only 

s l igh t ly  lower than 1-2 October pass a t  L values of 6 and above. 

difference i n  f i e l d  magnitude decreases f o r  the lower L values and la t i -  

tudes of the inbound passes. 

a t  L = 3.5 to 4.5 near +15O la t i tude on 6 October. 

0 
The difference 

The I 

I 

1 
I 
1 

A negative magnitude difference i s  observed 
I 
I 

The large posit ive differences above L = 5 are interpreted as due 

t o  a be l t  of trapped par t ic les  on lower  L shel ls .  

Such posit ive dis tor t ions are predicted by calculation of the magnetic 

(L = 2 t o  L = 5 ). 

f i e lds  due t o  trapped par t ic le  bel ts  (Akasol'u and Cain, 1962). The I 



I 
i 
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negative d i ee rences  seen a t  lower L values (kt. 5-6 ~n) a r e  interpreted 

a s  due t o  depression of the  f i e l d  within the  r ing current pa r t i c l e  be l t .  

Apparently the s a t e l l i t e  has not reached the  greatest  f i e l d  depression 

( a t  t he  maximum par t i c l e  density).  

proximately -20 y a t  this t i m e .  

i s  expected a t  t he  center of the  par t ic le  be l t  according t o  the  model 

Dst on the ear th ' s  surface was ap- 

A similar o r  somewhat greater depression 

calculations,  and after consideration of the contribution due t o  sub- 

surface currents. 

Magnetometer data, not shown here, acquired ju s t  p r io r  t o  satura- 

t i on  indicates that on t he  high l a t i t ude  passes the  posi t ive f i e l d  dif-  

ferences drop rapidly near L = 5 .  

near saturation, they suggest entry of the  s a t e l l i t e  i n t o  the belt of 

trapped par t ic les  b e l o w  L = 5 , t h a t i s  causing in f l a t ion  of t he  magneto- 

sphere. 

e t  al,(1961, 1962) we see that there is qual i ta t ive  agreement 

Although these data a re  less re l iab le ,  

In camparing the  s a t e l l i t e  records with the  results of Akasofu, 

The - 
model difference f i e l d  is posi t ive beyond the  pa r t i c l e  be l t  and reaches 

the  greatest  negative value near the center of the  be l t  inteneily.  Izci-F; 

is  a quantitative discrepancy, however. 

on October 5 outbound is  about +30 y near R = 4 R (L =7 ), Am = - 40'. 

For October 5-6 inbound corresponding difference i s  only + 8 y near 

R = 7 R~ (L =7 ), lrn = + 7'. 

correspond rouglily t o  these two passes. 

The maximum posi t ive difference 

e 

Figures 5 and 3 of ~kasofi, et al, 1961, 
Comparison is  d i f f i c u l t  since 

the  model belt of this calculation has i t s  center a t  6 Re rather than 

a t  3 Ee. 

between F and F dipole outside the  b e l t  ( 8  Re i n  t h e i r  Fig. 3, 5 Re i n  

t h e i r  Fig. 5 ) ,  that i s  greater at  Am = 40' than a t  10'. The pi tch  angle 

S t i l l  it i s  c lear  that t h i s  &el does not predict  a difference 

- 



- 

. 
a + 1  distribution, A (a) s i n  8, f o r  this 

t o  a greater density of par t ic les  a t  small pitch angles then for  an iso- 

model has cy = -3, corresponding 

tropic par t ic le  flux. 

dis tor t ion a t  high la t i tudes can be produced only by increasing the par- 

t i c l e  density there, by loweringcr s t i l l  more. The pitch angle d i s t r i -  

It appears that, with such a model, a greater f i e ld  

bution used by Akasofu e t  al, 1962, f o r  the quiet time proton bel t  

( E > 100 kevj has CY = t 2.21. iiorfmii aii6 m z k e c ,  1x5, ~ ? e  rv = 2.5. 

In  addition t o  the experimental errors discussed ear l ie r  i n  t h i s  

paper there a re  several other diff icul t ies  i n  interpretation of this dis- 

to r t ion  data. The reference f i e l d  magnitxde, subtracted from measured 

f ie ld  magnitude, may be inaccurate. 

c ies  between the magnitudes of the measured f i e ld  of the l o w  a l t i tude 

Vanguard 3 s a t e l l i t e  and reference f i e lds  a s  great as  2$ ( Finch and 

Leaton, 1957; Jensen and Whitaker, 1960). The more recent reference f i e l d  

computed by Jensen and Cain, 1962 was used i n  this study, but great i m -  

---------+ * -  i m  +he reference f ie ld  accuracy i n  not expected (Cain e t  a l ,  

1962). The 2$ discrepancies a t  low a l t i tude  my be d i s t r i b u w i  Lt: t ,w-=cl l  

Heppner e t  a l ,  1961, find discrepan- 

the dipole tern of the internal  f ield and the higher miltipoles. 

main f i e l d  above 3 Re i s  principally due t o  the dipole te rn  and 2$ can 

be taken a s  the maximum discrepancy, approximately 20 gammas a t  3 Re and 

approximately 6 gammas a t  5 Re. Errors i n  orb i ta l  position may be con- 

sidered equivalent t o  reference f ie ld  errors.  The orbi t  of Explorer 12 

was determined with high accuracy, however, a f t e r  many orbits,and f i e ld  

errors  from t h i s  source are believed t o  be much lower than the reference 

The 

f i e ld  errors.  

Compression of the magnetosphere by the solar  wind also produces 

Since the boundary is  observed t o  be i n  frequent a f i e l d  distortion. 
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motion, 8 t o  13 Re during Explorer 12 lifetime, a variable dis tor t ion 

f i e l d  due t o  barndary location i s  present a t  3 t o  8 Re. 

distance during the period 2 t o  7 O c t .  was observed t o  vary from10 Re  

The boundary 

t o  greater than 13 Re. 

d i s tor t ion  contribution due t o  the  boundary a t  4 Re,on the equator, varied 

from 2'j y t o  15 y (Mead, - 1964)- A t  higher la t i tudes  the  boundary compression 

cacaea less izcrease in f i e l d  

From boundary model resu l t s  we  estimate that the 

~ 

beyGeen 390 azG 500 m@iet& 

l a t i tude ,  according t o  Mead -' 
decreases the f i e l d  magnitude a t  higher la t i tudes.  

the boundary dis tor t ion reverses sign and 

Dolginov e t  al, 1966, find that the measured f i e l d  magnitude i s  less 

than t h e i r  predicted reference f ie ld  magnitude below 5 Re on outward passes 

(geographic l a t i t ude  less than 30") and below 7 Re on inward passes 

(geographic latitude l e s s  than 60'). They observe depressions of f i e l d  

I , magnitude 50 t o  100 y near 3 Re on most passes. During storms the de- 

pressions, on occasion, reach several hundred gammas. These data were 

obtained i n  February-April 1964 w h i l e  the  Elektron 2 s a t e l l i t e  orbi t  

moved frm the dawn meridian past the midnight meridian. 

The Elektron 2 data appear t o  disagree with the  Ekplorer 12 data; 

there are  several possible reasons for the disagreement. 

e r rors  are present i n  each set of data and a re  estimated t o  be l e s s  than 

20 y (Elektron 2) and 25 y (Explorer 12). 

w e r e  used; it appears un l ike ly tha t  this would cause more than 10 y dis- 

agreement above 3 Re. "he ESrplorer 12  data were obtained i n  1961; the  

Elektron data were obtained i n  1% during lower solar  and geomagnetic 

ac t iv i ty .  

ac t iv i ty  although there w e r e  several small storms. 

presented here was obtained during a large storm. 

merirnental. 

Different reference f i e lds  

"he EXektron data cover 3 months with generally low magnetic 

The Explorer 12 data 

Other data obtained 



during quiet  times do not show the consistent depression below 5 Re ob- 

served by Efektron 2. 

accounted for i n  either set of data. These effects  are comparable t o  

the observed f i e l d  differences and vary between the noon and midnight 

meridians and a t  different  la t i tudes.  Mead, 1964, predicts a decrease 

i n  f i e l d  magnitude due t o  boundary pressure a t  60 magnetic la t i tude .  

The e f fec ts  of boundary compression have not been 

- 
0 

X%z.k, I&.!& a tctal eIler&y c?etectnr 93 41 i21Dre r  12, QbsePed 

-1 large increases ( to  1000 ergs cm -2 sec 

100 e% E < 40 kev, during the development of the main phase of the mag- 

net ic  storms, on 1 Oct. and 29 Oct., 1961. These t ransient  (1 day) in- 

creases and enhancement above the prestorm level by a fac tor  of two f o r  

several  days after the 30 Sept. s to rm a re  observed from L = 2.8 t o  4.0 

with the  greatest increase a t  L = 3.0. These electrons appear t o  consti- 

tute a Fortion of t he  particles that cause the  storm t i m e  in f la t ion  of 

the magnetosphere. 

energy protons as an additional contribution t o  the inf la t ion.  

) i n  the flux of electrons, 

The t o t a l  energy measurements do not rule out low 

Conclusions 

The magnetosphere i s  inflated during the  magnetic storm of 30 

September, 1Sl. 

L = 5 (hank, 1966). 

a re  obtained outside this belt and an increase i n  f ie ld  magnitude is ob- 

served. 

The inf la t ing  par t ic les  form a belt between L = 2 and 

Be high l a t i tude  magnetic measurements of EXplorer 12 

Low l a t i t u d e  measurements, within but not a t  the  center of the 

be l t ,  show a f i e l d  depression. 

necessarily i n  disagreement with ELeWron 2 results. 

dis tor t ion  is the  vector sum of boundary and ring current in f la t ion  f ie lds ,  

plus t ransient  effects, and further progress demands precise vector treat- 

!l!he Explorer 12 measurements a r e  not 

The magnetosphere 

ment of the problem. 
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Figure Captions 

Figure 1 D s t  index, 24 September through 10 October 1961. Midnight of 

each day i s  indicated by long t i c k  mark, noon by short mark, 

m tirne scale. motted from D s t  data on magnetic tape pro- 

vided by W. Paulishak, Geomagnetism Div. U&shington Science 

C e n t e r ,  ESSA. 

Record of 30 September Sent. 1961 outbound pass. Total f i e ld  

magnitude, I B 1 , scale i n  gammas, spacecraft direction angles 

(Y and 4 i n  degrees, and radial distance i n  earth radii-Univer- 

sal time and magnetic la t i tude are  shown a t  top. 

Detailed v i e w  of a segment of the  30 Sept. record. I B I , IY 

and 4 scales a re  the same as  i n  Figure 2. Scale a t  base is  

universal t i m e  of measurement. 

Record of 1 Oct .  1961 inbound pass. 

i n  Figure 2. 

Figure 2 

Figure 3 

Figure 4 Scales a re  the same as  

Figure 5 Difference i n  magnitude,on 29 Sept. outbound pass, between 

measured f i e ld  and predicted (Jensen and Cain, 1962) f ie ld ,  

I B meas 1 - 1 B J, and C,l . Vertical l i nes  denoting magni- 

tude difference start a t  location of measurement i n  the mag- 

netic meridian plene. Heavy curve shows orb i t .  End of l ines ,  

dotted,are above l i n e  for  positive difference and below l ine  

fo r  negative difference. Magnetic la t i tude l ines  and l ines  

of constant L a re  shown. Radial distance i n  earth rad i i  is  

indicated along equator. 

Difference i n  magnitude for 26-27 Sept. inbound pass. 

Summary of magnitude difference records fo r  30 September, 1961, 

mametic s tom. Figure 7a shows inbound passes; shows out- 

Figure 6 

Figure 7 

bound passes. 
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